Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.367
Filtrar
1.
Eur J Med Chem ; 269: 116313, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38503168

RESUMO

Owing to the increasing resistance to most existing antimicrobial drugs, research has shifted towards developing novel antimicrobial agents with mechanisms of action distinct from those of current clinical options. Pleuromutilins are antibiotics known for their distinct mechanism of action, inhibiting bacterial protein synthesis by binding to the peptidyl transferase center of the ribosome. Recent studies have revealed that pleuromutilin derivatives can disrupt bacterial cell membranes, thereby enhancing antibacterial efficacy. Both marketed pleuromutilin derivatives and those in clinical trials have been developed by structurally modifying the pleuromutilin C14 side chain to improve their antimicrobial activity. Therefore, this review aims to review advancement in the chemical structural characteristics, antibacterial activities, and structure-activity relationship studies of pleuromutilins, specifically focusing on modifications made to the C14 side chain in recent years. These findings provide a valuable reference for future research and development of pleuromutilins.


Assuntos
Diterpenos , Compostos Policíclicos , 60595 , Antibacterianos/farmacologia , Antibacterianos/química , Diterpenos/farmacologia , Diterpenos/química , Compostos Policíclicos/farmacologia , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana
2.
J Med Chem ; 67(5): 3692-3710, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38385364

RESUMO

Herein, we report the hit-to-lead identification of a drug-like pleuromutilin conjugate 16, based on a triaromatic hit reported in 2020. The lead arose as the clear candidate from a hit-optimization campaign in which Gram-positive antibacterial activity, solubility, and P-gp affinity were optimized. Conjugate 16 was extensively evaluated for its in vitro ADMET performance which, apart from solubility, was overall on par with lefamulin. This evaluation included Caco-2 cell permeability, plasma protein binding, hERG inhibition, cytotoxicity, metabolism in microsomes and CYP3A4, resistance induction, and time-kill kinetics. Intravenous pharmacokinetics of 16 proved satisfactory in both mice and pigs; however, oral bioavailability was limited likely due to insufficient solubility. The in vivo efficacy was evaluated in mice, systemically infected with Staphylococcus aureus, where 16 showed rapid reduction in blood bacteriaemia. Through our comprehensive studies, lead 16 has emerged as a highly promising and safe antibiotic candidate for the treatment of Gram-positive bacterial infections.


Assuntos
Diterpenos , Compostos Policíclicos , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Suínos , 60595 , Antibacterianos/uso terapêutico , Antibacterianos/farmacocinética , Células CACO-2 , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Disponibilidade Biológica , Compostos Policíclicos/farmacologia , Testes de Sensibilidade Microbiana
3.
Cancer Med ; 13(2): e6942, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38376003

RESUMO

OBJECTIVE: The purpose of this study is to explore the biological mechanism of Schizandrin A (SchA) inducing non-small cell lung cancer (NSCLC) apoptosis. METHODS: The reverse molecular docking tool "Swiss Target Prediction" was used to predict the targets of SchA. Protein-protein interaction analysis was performed on potential targets using the String database. Functional enrichment analyses of potential targets were performed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The conformation of SchA binding to target was simulated by chemical-protein interactomics and molecular docking. The effect of SchA on the expression and phosphorylation level of EGFR was detected by Western blot. Lipofectamine 3000 and EGFR plasmids were used to overexpress EGFR. Apoptosis was tested with Annexin V-FITC and propidium iodide staining, and cell cycle was detected by propidium iodide staining. RESULTS: The "Swiss Target Prediction" database predicted 112 and 111 targets based on the 2D and 3D structures of SchA, respectively, of which kinases accounted for the most, accounting for 24%. Protein interaction network analyses showed that molecular targets such as ERBB family and SRC were at the center of the network. Functional enrichment analyses indicated that ERBB-related signaling pathways were enriched. Compound-protein interactomics and molecular docking revealed that SchA could bind to the ATP-active pocket of the EGFR tyrosine kinase domain. Laboratory results showed that SchA inhibited the phosphorylation of EGFR. Insulin could counteract the cytotoxic effect of SchA. EGFR overexpression and excess EGF or IGF-1 had limited impacts on the cytotoxicity of SchA. CONCLUSIONS: Network pharmacology analyses suggested that ERBB family members may be the targets of SchA. SchA can inhibit NSCLC at least in part by inhibiting EGFR phosphorylation, and activating the EGFR bypass can neutralize the cytotoxicity of SchA.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ciclo-Octanos , Lignanas , Neoplasias Pulmonares , Compostos Policíclicos , Humanos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Ciclo-Octanos/farmacologia , Receptores ErbB/genética , Lignanas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia
4.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396934

RESUMO

The quantitative structure-activity relationship (QSAR) is one of the most popular methods for the virtual screening of new drug leads and optimization. Herein, we collected a dataset of 955 MIC values of pleuromutilin derivatives to construct a 2D-QSAR model with an accuracy of 80% and a 3D-QSAR model with a non-cross-validated correlation coefficient (r2) of 0.9836 and a cross-validated correlation coefficient (q2) of 0.7986. Based on the obtained QSAR models, we designed and synthesized pleuromutilin compounds 1 and 2 with thiol-functionalized side chains. Compound 1 displayed the highest antimicrobial activity against both Staphylococcus aureus ATCC 29213 (S. aureus) and Methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentrations (MICs) < 0.0625 µg/mL. These experimental results confirmed that the 2D and 3D-QSAR models displayed a high accuracy of the prediction function for the discovery of lead compounds from pleuromutilin derivatives.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , 60595 , Antibacterianos/química , Relação Quantitativa Estrutura-Atividade , Staphylococcus aureus , Diterpenos/química , Compostos Policíclicos/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 783-794, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37658213

RESUMO

Schisandrin stands as one of the primary active compounds within the widely used traditional medicinal plant Schisandra chinensis (Turcz.) Baill. This compound exhibits sedative, hypnotic, anti-aging, antioxidant, and immunomodulatory properties, showcasing its effectiveness across various liver diseases while maintaining a favorable safety profile. However, the bioavailability of schisandrin is largely affected by hepatic and intestinal first-pass metabolism, which limits the clinical efficacy of schisandrin. In this paper, we review the various pharmacological effects and related mechanisms of schisandrin, in order to provide reference for subsequent drug research and promote its medicinal value.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Compostos Policíclicos , Medicamentos de Ervas Chinesas/farmacologia , Lignanas/farmacologia , Ciclo-Octanos/farmacologia , Compostos Policíclicos/farmacologia
6.
J Med Chem ; 66(22): 15061-15072, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37922400

RESUMO

Selective modulation of TRPC6 ion channels is a promising therapeutic approach for neurodegenerative diseases and depression. A significant advancement showcases the selective activation of TRPC6 through metalated type-B PPAP, termed PPAP53. This success stems from PPAP53's 1,3-diketone motif facilitating metal coordination. PPAP53 is water-soluble and as potent as hyperforin, the gold standard in this field. In contrast to type-A, type-B PPAPs offer advantages such as gram-scale synthesis, easy derivatization, and long-term stability. Our investigations reveal PPAP53 selectively binding to the C-terminus of TRPC6. Although cryoelectron microscopy has resolved the majority of the TRPC6 structure, the binding site in the C-terminus remained unresolved. To address this issue, we employed state-of-the-art artificial-intelligence-based protein structure prediction algorithms to predict the missing region. Our computational results, validated against experimental data, indicate that PPAP53 binds to the 777LLKL780-region of the C-terminus, thus providing critical insights into the binding mechanism of PPAP53.


Assuntos
Canais de Cátion TRPC , Sítios de Ligação , Microscopia Crioeletrônica , Canais de Cátion TRPC/efeitos dos fármacos , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/efeitos dos fármacos , Floroglucinol/farmacologia , Compostos Policíclicos/farmacologia
7.
Chem Biodivers ; 20(12): e202301298, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990607

RESUMO

Since ancient times, China has used natural medicine as the primary way to combat diseases and has a rich arsenal of natural medicines. With the progress of the times, the extraction of bioactive molecules from natural drugs has become the new development direction for natural medicines. Among the numerous natural drugs, Schisandrin C (Sch C), derived from Schisandra Chinensis (Turcz.) Baill. It has excellent potential for development and has been shown to possess various pharmacological properties, including hepatoprotective, antitumor and anti-inflammatory activities. Based on the biological properties of hepatoprotection, scholars have explored Sch C and its synthetic products in depth; some studies have shown that pentosidine has the effect of improving the symptoms of liver fibrosis and reducing the concentration of alanine transaminase (ALT) and aspartate aminotransferase (AST) in the serum of rats, which is an essential inspiration for the development of anti-liver fibrosis drugs. But more in vivo and ex vivo studies still need to be included. This paper focuses on Sch C's extraction and synthesis, biological activities and drug development progress. The future application prospects of Sch C are discussed to perfect its development work further.


Assuntos
Lignanas , Compostos Policíclicos , Schisandra , Ratos , Animais , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Ciclo-Octanos/farmacologia , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 262: 115882, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37879170

RESUMO

Multidrug-resistant bacteria, particularly methicillin-resistant Staphylococcus aureus, have become a major global public health concern. Therefore, developing new antibiotics that do not possess cross-resistance for the currently available antibiotics is critical. Herein, we synthesized a novel class of pleuromutilin derivatives containing substituted triazine with improved antibacterial activity. Among these derivatives, 6d, which contains 4-dimethylamino-1,3,5-triazine in the side chain of pleuromutilin, exhibited highly promising antimicrobial activity and mitigated antibiotic resistance. The high antibacterial potency of 6d was further supported by docking model analysis and green fluorescent protein inhibition assay. Additionally, cytotoxicity and acute oral toxicity evaluation and in vivo mouse systemic infection experiments revealed that 6d possessed tolerable toxicity and promising therapeutic efficacy.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Animais , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Antibacterianos/química , Diterpenos/farmacologia , Diterpenos/química , Compostos Policíclicos/farmacologia , Triazinas/farmacologia , Subunidades Ribossômicas/metabolismo
9.
Sci Rep ; 13(1): 13475, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596361

RESUMO

Pulmonary fibrosis (PF) is a serious progressive fibrotic disease that is characterized by excessive accumulation of extracellular matrix (ECM), thus resulting in stiff lung tissues. Lysyl oxidase (LOX) is an enzyme involved in fibrosis by catalyzing collagen cross-linking. Studies found that the ingredients in schisandra ameliorated bleomycin (BLM)-induced PF, but it is unknown whether the anti-PF of schisandra is related to LOX. In this study, we established models of PF including a mouse model stimulated by BLM and a HFL1 cell model induced by transforming growth factor (TGF)-ß1 to evaluate the inhibition effects of Schisandrin C (Sch C) on PF. We observed that Sch C treatment decreased pulmonary indexes compared to control group. Treatment of Sch C showed a significant reduction in the accumulation of ECM as evidenced by decreased expressions of α-SMA, FN, MMP2, MMP9, TIMP1 and collagen proteins such as Col 1A1, and Col 3A1. In addition, the expression of LOX in the lung tissue of mice after Sch C treatment was effectively decreased compared with the MOD group. The inhibition effects in vitro were consistent with those in vivo. Mechanistic studies revealed that Sch C significantly inhibited TGF-ß1/Smad2/3 and TNF-α/JNK signaling pathways. In conclusion, our data demonstrated that Sch C significantly ameliorated PF in vivo and vitro, which may play an important role by reducing ECM deposition and inhibiting the production of LOX.


Assuntos
Lignanas , Compostos Policíclicos , Fibrose Pulmonar , Animais , Camundongos , Fibrose Pulmonar/tratamento farmacológico , Colágeno , Lignanas/farmacologia , Lignanas/uso terapêutico , Compostos Policíclicos/farmacologia , Compostos Policíclicos/uso terapêutico
10.
Environ Toxicol Chem ; 42(11): 2389-2399, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477490

RESUMO

Polycyclic aromatic compounds (PACs) present in the water column are considered to be one of the primary contaminant groups contributing to the toxicity of a crude oil spill. Because crude oil is a complex mixture composed of thousands of different compounds, oil spill models rely on quantitative structure-activity relationships like the target lipid model to predict the effects of crude oil exposure on aquatic life. These models rely on input provided by single species toxicity studies, which remain insufficient. Although the toxicity of select PACs has been well studied, there is little data available for many, including transformation products such as oxidized hydrocarbons. In addition, the effect of environmental influencing factors such as temperature on PAC toxicity is a wide data gap. In response to these needs, in the present study, Stage I lobster larvae were exposed to six different understudied PACs (naphthalene, fluorenone, methylnaphthalene, phenanthrene, dibenzothiophene, and fluoranthene) at three different relevant temperatures (10, 15, and 20 °C) all within the biological norms for the species during summer when larval releases occur. Lobster larvae were assessed for immobilization as a sublethal effect and mortality following 3, 6, 12, 24, and 48 h of exposure. Higher temperatures increased the rate at which immobilization and mortality were observed for each of the compounds tested and also altered the predicted critical target lipid body burden, incipient median lethal concentration, and elimination rate. Our results demonstrate that temperature has an important influence on PAC toxicity for this species and provides critical data for oil spill modeling. More studies are needed so oil spill models can be appropriately calibrated and to improve their predictive ability. Environ Toxicol Chem 2023;42:2389-2399. © 2023 SETAC.


Assuntos
Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes Químicos da Água , Animais , Larva , Nephropidae , Temperatura , Compostos Policíclicos/farmacologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos Orgânicos/farmacologia , Petróleo/toxicidade , Poluição por Petróleo/análise , Lipídeos
11.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375183

RESUMO

Pleuromutilins are a group of antibiotics derived from the naturally occurring compound. The recent approval of lefamulin for both intravenous and oral doses in humans to treat community-acquired bacterial pneumonia has prompted investigations in modifying the structure to broaden the antibacterial spectrum, enhance the activity, and improve the pharmacokinetic properties. AN11251 is a C(14)-functionalized pleuromutilin with a boron-containing heterocycle substructure. It was demonstrated to be an anti-Wolbachia agent with therapeutic potential for Onchocerciasis and lymphatic filariasis. Here, the in vitro and in vivo PK parameters of AN11251 were measured including PPB, intrinsic clearance, half-life, systemic clearance, and volume of distribution. The results indicate that the benzoxaborole-modified pleuromutilin possesses good ADME and PK properties. AN11251 has potent activities against the Gram-positive bacterial pathogens tested, including various drug-resistant strains, and against the slow-growing mycobacterial species. Finally, we employed PK/PD modeling to predict the human dose for treatment of disease caused by Wolbachia, Gram-positive bacteria, or Mycobacterium tuberculosis, which might facilitate the further development of AN11251.


Assuntos
Diterpenos , Oncocercose , Compostos Policíclicos , Humanos , Antibacterianos/química , Boro , Diterpenos/química , Compostos Policíclicos/farmacologia , Oncocercose/tratamento farmacológico , Bactérias , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana
12.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175382

RESUMO

Two series of pleuromutilin derivatives were designed and synthesized as inhibitors against Staphylococcus aureus (S. aureus). 6-chloro-4-amino-1-R-1H-pyrazolo[3,4-d]pyrimidine or 4-(6-chloro-1-R-1H-pyrazolo[3,4-d]pyrimidine-4-yl)amino-phenylthiol were connected to pleuromutilin. A diverse array of substituents was introduced at the N-1 position of the pyrazole ring. The in vitro antibacterial activities of these semisynthetic derivatives were evaluated against two standard strains, Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, Staphylococcus aureus (S. aureus), ATCC 29213 and two clinical S. aureus strains (144, AD3) using the broth dilution method. Compounds 12c, 19c and 22c (MIC = 0.25 µg/mL) manifested good in vitro antibacterial ability against MRSA which was similar to that of tiamulin (MIC = 0.5 µg/mL). Among them, compound 22c killed MRSA in a time-dependent manner and performed faster bactericidal kinetics than tiamulin in time-kill curves. In addition, compound 22c exhibited longer PAE than tiamulin, and showed no significant inhibition on the cell viability of RAW 264.7, Caco-2 and 16-HBE cells at high doses (≤8 µg/mL). The neutropenic murine thigh infection model study revealed that compound 22c displayed more effective in vivo bactericidal activity than tiamulin in reducing MRSA load. The molecular docking studies indicated that compound 22c was successfully localized inside the binding pocket of 50S ribosomal, and four hydrogen bonds played important roles in the binding of them.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Infecções Estafilocócicas , Animais , Camundongos , Humanos , Staphylococcus aureus , Simulação de Acoplamento Molecular , Células CACO-2 , Testes de Sensibilidade Microbiana , Antibacterianos/química , Diterpenos/química , Compostos Policíclicos/farmacologia , Pirimidinas/farmacologia , Pirimidinas/química , Infecções Estafilocócicas/tratamento farmacológico
13.
Eur J Med Chem ; 251: 115269, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924667

RESUMO

A series of pyridinium cation-substituted pleuromutilin analogues were designed, synthesized and evaluated for their antibacterial activities in vitro and in vivo. Most derivatives showed potent antibacterial activities, especially e4 that displayed the highest antibacterial activity against multi-drug resistant bacteria and was subjected to time-kill kinetics, resistance studies, cytotoxicity and molecular docking assays. Molecular docking results, scanning electron microscopy and o-nitrophenyl-ß-galactopyranoside tests showed that e4 not only inhibited bacterial protein synthesis but also disrupted bacterial cell walls. Compound e4 showed an ED50 of 5.68 mg/kg against multi-drug resistant Staphylococcus aureus in infected mice model. In in vivo and in vitro toxicity tests, e4 showed low toxic effects with an LD50 of 879 mg/kg to mice. These results suggest that compound e4 may be considered as a new therapeutic candidate for bacterial infections.


Assuntos
Infecções Bacterianas , Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Animais , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Compostos Policíclicos/farmacologia , Resistência a Múltiplos Medicamentos
14.
Drug Dev Res ; 84(4): 703-717, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36896715

RESUMO

A series of thioether pleuromutilin derivatives containing 1,2,4-triazole on the side chain of C14 were designed and synthesized. The in vitro antibacterial activities experiments of the synthesized derivatives showed that compounds 72 and 73 displayed superior in vitro antibacterial effect against MRSA minimal inhibitory concentration (MIC = 0.0625 µg/mL) than tiamulin (MIC = 0.5 µg/mL). The results of time-kill study and postantibiotic effect study indicated that compound 72 could inhibit the growth of MRSA quickly (-2.16 log10 CFU/mL) and showed certain postantibiotic effect (PAE) time (exposure to 2 × MIC and 4 × MIC for 2 h, the PAE was 1.30 and 1.35 h) against MRSA. Furthermore, the binding mode between compound 72 and 50S ribosome of MRSA was explored by molecular docking and five hydrogen bonds were formed between compound 72 and 50S ribosome.


Assuntos
Antibacterianos , Compostos Policíclicos , Simulação de Acoplamento Molecular , Antibacterianos/química , Compostos Policíclicos/farmacologia , Compostos Policíclicos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
15.
Eur J Med Chem ; 246: 114960, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36462445

RESUMO

Growing antibiotic resistance is causing a health care crisis, leading to an urgent need for new antibiotics to tackle serious hospital and community infections. Pleuromutilin, a naturally occurring product with moderate antibacterial activity, has a unique structure that has attracted great efforts to modify its scaffold to obtain lead compounds. Herein, we report the synthesis of a series of novel pleuromutilin derivatives with a scaffold of 4(3H)-quinazolinone or its analogues at the C-14 side chain and investigated their in vitro activity against Staphylococcus aureus and Staphylococcus epidermidis as well as Gram-negative bacteria (Escherichia coli and Salmonella enterica subsp. enterica serovar pullorum). Structure-activity relationship (SAR) studies showed that the substituents on the benzene ring of 4(3H)-quinazolinone was not as important as the substituted position to improve antibacterial activity while the substituted groups on the N-3 position of 4(3H)-quinazolinone had strong impact on the efficacy. The replacement of the benzene moiety of 4(3H)-quinazolinone with other rings (pyridine, pyrrole, thiophene, or cyclopentyl) also showed high antibacterial efficacy, meaning the benzene ring was dispensable for exerting powerful antibacterial properties. In vitro pharmacokinetics investigations and cytotoxicity assays indicated that 2-mercapto-4(3H)-quinazolinone scaffold was superior to 2-(piperazin-1-yl)quinazolin-4(3H)-one. Among this series of pleuromutilin analogues, compound 23 with a structure of 2-mercapto-3H-pyrrolo[2,3-d]pyrimidin-4(7H)-one displayed the best in vitro antibacterial activity against MRSA (MIC = 0.063 µg/mL) and low cytotoxicity to RAW 264.7 cells (IC50>100 µM) and was demonstrated to inhibit MRSA effectively in a mouse thigh infection model, outperforming the comparator, tiamulin.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Animais , Camundongos , Antibacterianos/química , Benzeno/farmacologia , Diterpenos/farmacologia , Escherichia coli , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Compostos Policíclicos/farmacologia , Quinazolinonas/farmacologia , Relação Estrutura-Atividade
16.
Eur J Med Chem ; 243: 114713, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36087386

RESUMO

Pleuromutilins, the unique fungal metabolites possessing 5/6/8 tricyclic skeleton, are potent antibacterial leading compounds for the development of new antibiotics. We applied the MS/MS molecular networking technique and the combinatorial biosynthesis approach to discover new pleuromutilin analogues. Ten pleuromutilin derivatives including seven new compounds (1-7) were obtained from the solid culture of Omphalina mutila. The gene cluster for the biosynthesis of pleuromutilins in the mushroom of O. mutila was identified and further expressed in yeast. Nine pleuromutilin-type diterpenes including three new "unnatural" pleuromutilins (16-18) were generated in a GGPP-engineered Saccharomyces cerevisiae. The antimicrobial bioassays indicated that compounds 3, 9, 10, 15, and 17 exhibited potent inhibition against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Several pleuromutilins were found to show immunomodulatory activities by promoting the cell viability, enhancing the ROS and NO production, or increasing the levels of proinflammatory cytokines IL-6 and TNF-α in the macrophage RAW 264.7. The structure-activity relationship for pleuromutilins was analyzed.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Espectrometria de Massas em Tandem , Compostos Policíclicos/farmacologia , Diterpenos/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
17.
Molecules ; 27(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35956888

RESUMO

The novel pleuromutilin derivative, which showed excellent in vitro antibacterial activity against MRSA, 22-(2-(2-(4-((4-(4-nitrophenyl)piperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thioacety-l-yl-22-deoxypleuromutilin (Z33), was synthesized and characterized in our previous work. In this study, the preliminary pharmacodynamics and safety of Z33 were further evaluated. In in vitro antibacterial activity assays, Z33 was found to be a potent bactericidal antibiotic against MRSA that induced dose-dependent growth inhibition and long-term post-antibiotic effect (PAE). The drug-resistance test demonstrated that Z33 possessed a narrow mutant selection window and lower propensities to select resistance than that of tiamulin. Cytochrome P450 (CYP450) inhibition assay determined that the inhibitory effect of Z33 was similar to that of tiamulin against the activity of CYP3A4, and was lower than that of tiamulin on the activity of CYP2E1. Toxicity determination showed that both Z33 and tiamulin displayed low cytotoxicity of RAW264.7 cells. Furthermore, Z33 was found to be a high-security compound with a 50% lethal dose (LD50) above 5000 mg/kg in the acute oral toxicity test in mice. In an in vivo antibacterial activity test, Z33 displayed better therapeutic effectiveness than tiamulin in the neutropenic mouse thigh infection model. In summary, Z33 was worthy of further development as a highly effective and safe antibiotic agent against MRSA infection.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Camundongos , Testes de Sensibilidade Microbiana , Compostos Policíclicos/farmacologia
18.
J Enzyme Inhib Med Chem ; 37(1): 2078-2091, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35875944

RESUMO

A series of pleuromutilin derivatives containing alkylamine and nitrogen heterocycle groups were designed and synthesised under mild conditions. The in vitro antibacterial activity of these semisynthetic derivatives against four strains of Staphylococcus aureus (MRSA ATCC 43300, S.aureus ATCC 29213, S.aureus AD3, and S.aureus 144) were evaluated by the broth dilution method. Compound 13 was found to have excellent antibacterial activity against MRSA (MIC = 0.0625 µg/mL). Furthermore, compound 13 was further studied by the time-killing kinetics and the post-antibiotic effect approach. In the mouse thigh infection model, compound 13 exhibited superior antibacterial efficacy than that of tiamulin. Meanwhile, compound 13 showed a lower inhibitory effect than that of tiamulin on RAW264.7 and 16HBE cells at the concentration of 10 µg/mL. Molecular docking study revealed that compound 13 can effectively bind to the active site of the 50S ribosome (the binding free energy = -9.66 kcal/mol).


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Nitrogênio/farmacologia , Compostos Policíclicos/farmacologia , Staphylococcus aureus
19.
Eur J Med Chem ; 237: 114398, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468515

RESUMO

A series of novel pleuromutilin derivatives with substituted thienopyrimidines were designed, synthesized, and evaluated for antibacterial act ivity. In this study, the activities of these compounds were investigated using the inhibition circle test, the minimum inhibitory concentration (MIC) test, real-time growth curves, time-kill kinetic assays, cytotoxicity assays, and molecular docking. Most of the tested compounds exhibited moderate antibacterial activity against Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli. Compound A11 was the most active and displayed bacteriostatic activities against methicillin-resistant S. aureus, with MIC values as low as 0.00191 µg/mL, which is 162 and 32 times lower than that of the marketed antibiotics tiamulin and retapamulin, respectively. Furthermore, the mechanism of action of A11 was confirmed by molecular docking studies.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Antibacterianos , Diterpenos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Compostos Policíclicos/farmacologia , Pirimidinas/farmacologia , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 237: 114403, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472849

RESUMO

Novel pleuromutilin derivatives with 3,4-dihydropyrimidin and pyrimidine moieties were designed, synthesized, and evaluated for their antibacterial activities. Most of the synthesized derivatives, especially the compounds bearing the pyrimidine moieties, exhibited potent antibacterial activities against methicillin-resistant Staphylococcus aureus BNCC 337371 (MRSA-337371), Staphylococcus aureus ATCC 25923 (S. aureus-25923) and methicillin-resistant Staphylococcus epidermidis ATCC 51625 (MRSE-51625). Compounds 5a, 5g and 5h exerted the excellent antibacterial activities and selected to evaluate their bacterial killing kinetics. Compound 5h displayed the highest antibacterial activities with bacteriostatic activities against MRSA and further evaluated its efficacy in mouse systemic infection. The results showed that compound 5h exhibited potent in vivo antibacterial effects to significantly improve the survival rate of mice (ED50 = 16.14 mg/kg), reduce the bacterial load and alleviate the pathological changes in the lungs of the affected mice. Furthermore, molecular docking studies revealed that the selected compounds successfully localized in the pocket of 50S ribosomal subunit and the formed hydrogen bonds were the main interaction.


Assuntos
Diterpenos , Staphylococcus aureus Resistente à Meticilina , Compostos Policíclicos , Animais , Antibacterianos/química , Diterpenos/química , Diterpenos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Pirimidinas/química , Staphylococcus aureus , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...